Memory tracking for iterative container migration

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreements No 645402 and No 688386

Current state

- Using soft-dirty
- Iterations are independent
- Control is outside CRIU scope

Userfaultfd-WP

- Userfaultfd notification for WRITE page faults
- More flexible and robust than soft-dirty
- May obsolete soft-drity

Possible flow

Iteration 1

- Start memory tracker daemon
- Freeze tasks
- Create memory pre-dump
- Register task memory with uffd
 - Pass the uffd to the daemon
- Un-freeze tasks
- The tracker monitors page writes

Iteration 2..n-1

- Freeze tasks
- Get dirty pages bitmap
- Dump dirty pages
- Un-freeze tasks

Possible flow (cont)

Iteration 2..n-1

- Freeze tasks
- Get dirty pages bitmap?
- Dump dirty pages
- Un-freeze tasks

Possible flow (cont again)

Iteration n

- Freeze tasks
- Get dirty pages bitmap
- Dump dirty pages
- Unregister uffd
- Complete dump

Memory tracker

- Receive uffds from the dump
- Process WRITE faults
- Process bitmap requests

Open points

- Who is responsible for saving modified pages
 - Memory tracker vs dump
- How memory tracker and dump communicate
 - UNIX socket? Something else?
- Where and how control should be implemented
 - P.Haul, container engines, both?

References

https://www.kernel.org/doc/Documentation/vm/userfaultfd.txt

http://man7.org/linux/man-pages/man2/userfaultfd.2.html

https://schd.ws/hosted_files/lcccna2016/c4/userfaultfd.pdf

http://wiki.qemu.org/Features/PostCopyLiveMigration

https://criu.org/Lazy_migration

https://medium.com/@MartinCracauer/generational-garbage-collection-write-barriers-write-protection-and-userfaultfd-2-8b0e796b8f7f

Thank you!